Search results for "Noetherian type"

showing 2 items of 2 documents

On two topological cardinal invariants of an order-theoretic flavour

2012

Noetherian type and Noetherian $\pi$-type are two cardinal functions which were introduced by Peregudov in 1997, capturing some properties studied earlier by the Russian School. Their behavior has been shown to be akin to that of the \emph{cellularity}, that is the supremum of the sizes of pairwise disjoint non-empty open sets in a topological space. Building on that analogy, we study the Noetherian $\pi$-type of $\kappa$-Suslin Lines, and we are able to determine it for every $\kappa$ up to the first singular cardinal. We then prove a consequence of Chang's Conjecture for $\aleph_\omega$ regarding the Noetherian type of countably supported box products which generalizes a result of Lajos S…

NoetherianHigher Suslin LinePixley–Roy hyperspacePrimary: 03E04 54A25 Secondary: 03E35 54D70LogicOpen setMathematics::General TopologyDisjoint setsTopological spaceType (model theory)TopologyChangʼs ConjectureChangʼs Conjecture for ℵωFOS: MathematicsBox productMathematicsMathematics - General TopologyConjectureMathematics::Commutative AlgebraGeneral Topology (math.GN)PCF theoryNoetherian typeMathematics - LogicInfimum and supremumMathematics::LogicOIF spaceLogic (math.LO)
researchProduct

Noetherian type in topological products

2010

The cardinal invariant "Noetherian type" of a topological space $X$ (Nt(X)) was introduced by Peregudov in 1997 to deal with base properties that were studied by the Russian School as early as 1976. We study its behavior in products and box-products of topological spaces. We prove in Section 2: 1) There are spaces $X$ and $Y$ such that $Nt(X \times Y) < \min\{Nt(X), Nt(Y)\}$. 2) In several classes of compact spaces, the Noetherian type is preserved by the operations of forming a square and of passing to a dense subspace. The Noetherian type of the Cantor Cube of weight $\aleph_\omega$ with the countable box topology, $(2^{\aleph_\omega})_\delta$, is shown in Section 3 to be closely related …

Topological manifoldFundamental groupTopological algebraGeneral MathematicsTopological tensor productGeneral Topology (math.GN)Noetherian typeMathematics::General TopologyMathematics - LogicTopological spaceChang’s conjectureTopologyTopological vector spaceTukey mapH-spaceMathematics::LogicFOS: MathematicsPCF theoryTopological ring03E04 54A25 (Primary) 03E55 54B10 54D70 54G10 (Secondary)Box productLogic (math.LO)Mathematics - General TopologyMathematics
researchProduct